Function Approximation using Neural and Fuzzy Methods
نویسندگان
چکیده
منابع مشابه
Function Approximation Performance of Fuzzy Neural Networks
In this paper we propose a Multilayer Perceptron Neural Network (MLP NN) consisting of fuzzy flip-flop neurons based on various fuzzy operations applied in order to approximate a real-life application, two input trigonometric functions, and two and six dimensional benchmark problems. The Bacterial Memetic Algorithm with Modified Operator Execution Order algorithm (BMAM) is proposed for Fuzzy Ne...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملFunction Approximation Using Probabilistic Fuzzy Systems
We consider function approximation by fuzzy systems. Fuzzy systems are typically used for approximating deterministic functions, in which the stochastic uncertainty is ignored. We propose probabilistic fuzzy systems in which the probabilistic nature of uncertainty is taken into account. Furthermore, these systems take also fuzzy uncertainty into account by their fuzzy partitioning of input and ...
متن کاملLearning Fuzzy Rule-Based Neural Networks for Function Approximation
In this paper, we present a method for the induction of fuzzy logic rules to predict a numerical function from samples of the function and its dependent variables. This method uses an information-theoretic approach based on our previous work with discrete-valued data [3]. The rules learned can then be used in a neural network to predict the function value based upon its dependent variables. An ...
متن کاملDesign of Hybrid Fuzzy Neural Network for Function Approximation
In this paper, a hybrid Fuzzy Neural Network (FNN) system for function approximation is presented. The proposed FNN can handle numeric and fuzzy inputs simultaneously. The numeric inputs are fuzzified by input nodes upon presentation to the network while the Fuzzy rule based knowledge is translated directly into network architecture. The connections between input to hidden nodes represent rule ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Applied Electronics
سال: 2016
ISSN: 2394-4714
DOI: 10.5120/cae2016652427